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1 Introduction
Biomedical Imaging
Image processing: what for?

2 Digital images
Image acquisition and representation

3 Image enhancement
Spatial Filtering
Intensity transformations
Image histograms and equalization
Convolution filters
Order-statistic filters
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4 Image segmentation
Thresholding
Texture segmentation
Edge detection
Active contours

5 Image Registration
Basics

6 Shape analysis
Basics
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Imaging modalities
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Anatomical vs. Functional Imaging
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History: X-ray

Wilhelm Conrad Röntgen
8 November 1895: discovers X-rays
22 November 1895: X-rays
Mrs. Röntgen’s hand
1901: receives first Nobel Prize in
physics
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History: Computed Tomography (CT)

acquiring many projections around the object
enables the reconstruction of the 3D object (or a
cross-sectional 2D slice)

The breakthrough

1917: Johann Radon establishes the
mathematical framework for tomography, now
called the Radon transform
1963: Allan Cormack publishes mathematical
analysis of tomographic image reconstruction,
unaware of Radons work
1972: Godfrey Hounsfield develops first CT
system, unaware of either Radon or Cormacks
work, develops his own reconstruction method
1979: Hounsfield and Cormack receive the
Nobel Prize in Physiology or Medicine

CT pioneers
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CT: past and present
1975: Siemens SIRETON CT scanner (image size 128× 128)

Now: Common modern CT scanner (image size 512× 512)
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3D Visualization Capabilities

Extrapolate novel
views of the structures

Maximum intensity visualization

Shaded structures visualization
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More visualizations

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 10 / 109



Visualization and Virtual Medicine
Offer a virtual reality environment for

Virtual examination (e.g. virtual colonscopy)

Surgical planning

Medical training
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Ultrasound: past and present
1942. Dr. Karl Theodore Dussik: transmission ultrasound investigation of the
brain
1955. Holmes and Howry: Subject submerged in water tank to achieve good
acoustic coupling
1959. Automatic scanner, Glasgow

Intra Vascular Doppler

3D UltrasoundUS scanner
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History: MRI

1946: Felix Bloch (Stanford) and Edward Purcell (Harvard)
demonstrate nuclear magnetic resonance (NMR)
1973: Paul Lauterbur (Stony Brook University, Nobel 2003)
published first MRI (Magnetic Resonance Imaging) image in
Nature
Late 1970s: First human MRI images conceived
Early 1980s: First commercial MRI systems available
1993: Functional MRI in humans demonstrated
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MRI: basics
MRI measures the effects of magnetic properties of tissue
Effects are tissue-specific
Also specific to blood perfusion/ oxygenization (functional MRI)
MRI is very versatile (but also more expensive than CT)

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 14 / 109



MRI: basics

Permits the acquisition of several kind of images:

T1, density and T2 weighted MRI
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MRI: applications
Functional MRI:

Allows to assess brain activity during certain
tasks
Valuable for brain functional studies
(cognitive sciences)
Also for surgery planning and diagnosis
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MRI: recent applications

Cardiac tagged MRI:
Draw magnetic patterns
in the matter
Study how these
patterns are distorted
during heart contraction
Infer information about
heart dynamical
behavior
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MRI: very recent applications

Diffusion Tensor Imaging:
Measures the diffusion of water
Allows the tracking of nerve fibers in the brain (white matter)
Visualization challenging!
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Molecular imaging

Exotic but trendy
Molecular imaging provides information about specific molecular
processes
Links to genomic and proteonomics
Exploits all portions of the physical spectrum in addition to sound
No one of the previous imaging modality is ideal so combinations
must often be used
Often in vivo
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Molecular imaging
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Molecular imaging
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Image processing: what for?

Image acquisition and reconstruction⇒ Physics, Maths, Engineer, . . .
studies how to reconstruct efficiently meaningful images from the
raw data

Visualization⇒ Computer graphics
studies how to visualize the reconstructed images in a way that is
useful for human observers

Image Analysis and Understanding⇒ Computer Vision
studies how to emulate with a computer perceptual and visual
behaviors similar to the biological ones
studies models, algorithms and techniques to

I obtain objective measurements automatically
I recognize objects, structures and events
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Processes in Computer Vision

Acquisition

Signal and
Image Processing

Pattern Recognition

Artificial Intelligence

Digitalization

Image Processing

Image Analysis

Image Understanding
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Low-Level Vision (image processing)

Image processing processes: set of operations performed on images
aiming at enhancing their quality and selecting useful information,
which will be processed by humans or other algorithms

Images Image processing Images
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Example of low-level processing

Input Image Gaussian blur Contour extraction

Contour selectionSegmentation
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Mid-Level Vision (image analysis)

Includes extraction of symbolic information from pre-processed
images and analysis techniques of the visual characteristics of the
objects that are in the images

Images Image analysis

Images

Features vector of the seg-
mented objects or of the scene
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Example of mid-level processing

Extraction of visual primitives:
I Area
I Circularity

Labeling
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High-Level Vision (image understanding)
Aims at obtaining some “comprehension” of the observed scene, as shape recog-
nition or spatial relationship among objects. It includes high-level abstraction pro-
cesses:

Classification
Identification
Localization

Image understanding

Knowledge
base

Images

Features vector

Decision process
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Example of high-level processing

Classification method
Non supervised

Clustering

♣
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Outline

2 Digital images
Image acquisition and representation
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Digital Image Acquisition: sensor array

Light source, Object reflection
CCD sensor

Imaging System: Lenses
Digital Image
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Digital Image Acquisition: sensor strip
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Sampling & Quantization

Sampling produces continuous values f [x , y ]

Digitizing the Pixel Amplitude — Quantization
n bits per pixel — 2n Discrete (monochromatic)
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Digital Image Representation
The result of sampling and quantization is a matrix:

f (x , y) =


f (0,0) f (0,1) · · · f (0,N−1)

f (1,0) f (1,1) · · · f (1,N−1)

...
...

. . .
...

f (M−1,0) f (M−1,1) · · · f (M−1,N−1)


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Outline

3 Image enhancement
Spatial Filtering
Intensity transformations
Image histograms and equalization
Convolution filters
Order-statistic filters
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Spatial filtering

The simplest way to enhance
an image f
Based on direct manipulation
of the pixels

g(x , y) = T [f (x , y)]

T operator on f
defined over a neighborhood
of the pixel (x , y) (for example
a small subimage centered at
(x , y) )

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 36 / 109



Intensity transformations

Spatial filtering with neighborhood size 1× 1
In this case g depends only on the intensity value of f at (x , y)

It is completely described as a function between intensity values:

s = T (r)
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First examples
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First examples
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Intensity transformations: contrast enhancement
Left plot: Contrast stretching

I Darken gray values below m
I Brighten gray values above

Right plot: Thresholding
I Limit of contrast stretching
I Produces a binary image

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 40 / 109



Contrast enhancement

a) Intensity transform
b) Low contrast

image
c) Contrast

enhanced image
d) Thresholded

image
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Negative

Equivalent of photographic negative
Enhance white or gray details embedded in a black background
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Image histograms

Discrete function
that associates to
the gray level r the
number of pixels Nr
having gray value
equal to r

Image Histogram
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Image histograms: example
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Histogram equalization

An enhancement method based on intensity transformation
Find a function s = T (r) (strictly increasing) such that the image

g(x , y) = T ◦ f (x , y)

has uniform normalized histogram
Letting p(r) be the normalized histogram of f

T (r) =
∑
r ′≤r

p(r ′)
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Histogram equalization: example 1
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Histogram equalization: example 2
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Convolution filters

Linear spatial filters based on convolution kernels
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Convolution filters

Different choices of h lead to very different results:
Smoothing
Sharpening
Edge enhancement
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Smoothing filters

Averaging matrix kernel:

1 1 1

1 1 1

1 1 1

(size 3× 3)
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Averaging filters

Original image mask size = 9× 9 mask size = 35× 35
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Averaging filters

Original image Gaussian Noise added mask size = 3× 3
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Smoothing filters

Gaussian filter:

1 2 1

2 4 2

1 2 1

(size 3× 3)
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Gaussian filters

Original image mask size = 3× 3 mask size = 9× 9
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Sharpening filters

a) Two sharpening
filters

b) Original image
c) Application of I

filter
d) Application of II

filter
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Sharpening filters

Original image mask size = 3× 3 mask size = 9× 9
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Edge enhancement: Definition

An edge is a location in the image where there is a steep intensity
variation
Hopefully, these discontinuities correspond to boundaries of object
of interest
How do we enhance edges?

I Determine a measure of intensity change in the pixels
neighbourhood

I First derivative of a two-variate function→ Gradient
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Edge enhancement: Sobel Operator

Estimation of ∇f in 2 directions:

hhor =

 −1 0 1
−2 0 2
−1 0 1

 hvert =

 −1 −2 −1
0 0 0
1 2 1


It can be thought:

1 First Gaussian blurring
2 Then derivation

Indeed, f ′ ∗ g = (f ∗ g)′ = f ∗ g′

Sobel operator is separable!
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Edge enhancement: Sobel Operator

50 100 150 200 250 300 350
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Gradient norm
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Edge enhancement: Laplace operator

∇2 =∇ · ∇ =

(
∂2

∂x2

)
+

(
∂2

∂y2

)

∇2 ≈

 0 0 0
1 −2 1
0 0 0

+

 0 1 0
0 −2 1
0 1 0

 =

 0 1 0
1 −4 1
0 1 0



50 100 150 200 250 300 350

50

100

150

200
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Order-statistic filters

Sort pixel values inside a m × n neighborhood of pixel (x , y)

2 5 1

6 4 5

9 7 11

1 ≤ 2 ≤ 4 ≤ 5 ≤ 5 ≤ 6 ≤ 7 ≤ 9 ≤ 11

The response of this class of filters depends on the ordering of the
pixel values
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Order-statistics filters: Min-filter

Sort pixel values inside a m × n neighborhood of pixel (x , y)

2 5 1

6 4 5

9 7 11

1 ≤ 2 ≤ 4 ≤ 5 ≤ 5 ≤ 6 ≤ 7 ≤ 9 ≤ 11

Elimination of salt noise
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Order-statistics filters: Max-filter

Sort pixel values inside a m × n neighborhood of pixel (x , y)

2 5 1

6 4 5

9 7 11

1 ≤ 2 ≤ 4 ≤ 5 ≤ 5 ≤ 6 ≤ 7 ≤ 9 ≤ 11

Elimination of pepper noise
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Order-statistics filters: Median filter

Sort pixel values inside a m × n neighborhood of pixel (x , y)

2 5 1

6 4 5

9 7 11

1 ≤ 2 ≤ 4 ≤ 5 ≤ 5 ≤ 6 ≤ 7 ≤ 9 ≤ 11

Elimination of general impulsive noise
Less blurring than linear smoothing filter

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 64 / 109



Applications of Order-statistics filters: Min filter

Original Salt added Min filter 3× 3
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Applications of Order-statistics filters: Median filter

Original Salt & Pepper added Median filter 3× 3
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Applications of Order-statistics filters: Median filter

Original Gaussian noise added Median filter 3× 3
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Further Example: Anisotropic Diffusion

Original image

Image after evolution

Slow Normal Fast Play/Pause Stop
If your pdf viewer does not support this media, click here
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Outline

4 Image segmentation
Thresholding
Texture segmentation
Edge detection
Active contours
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Image segmentation: definition

Fundamental step in many applications
Segmentation = Partitioning of the image into homogeneous
regions with respect to some visual feature (e.g. gray level value)
Distinguishing objects from the background
Two approaches:

I Region based methods
I Edge based methods
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Thresholding

Selection of an intensity T (called Threshold) capable to divide the
image into two regions, corresponding to higher or lower intensity
value
Given an image f (x , y) and a threshold T , a binary image g(x , y)
is produced:

g(x , y) =

{
1 if f (x , y) ≥ T
0 otherwise

Threshold selection depends on the intensity value of the objects
of interest
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Automatic Threshold selection

In case no a priori information is available
Exploiting the statistical properties of the image, e.g. its
histogram

I Histogram valleys as thresholds
I Histogram inflection points as thresholds
I Otsu’s method (1979)

F Optimal threshold selection method
F Minimize the within-group variance

0 50 100 150 200 250

0

200

400

600

800

1000

1200
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Otsu thresholding: Example

Original

T = 100

Otsu (T = 127)

T = 160
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Example: Improvement via texture features

Range Variance Haralick Entropy

Texture Features

Thresholding
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Example: Improvement via texture features

Range Variance Haralick Entropy

Original

Image

Texture

Operator

Smoothing

Filter
Thresholding

Segmented

Image
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Further Example: Watershed segmentation

Another popular region based method, like thresholding
Boundaries are local extrema of features
Drawback: over-segmentation
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Further Example: Watershed segmentation

Gradient magnitude as feature
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Edge based segmentation

This approach identifies the steep
intensity variations in an image,
called edges
Uses edge operators plus
binarization (e.g. thresholding)
Hopefully these correspond to object
boundaries
Edges are extended or deleted so
as to produce closed boundaries
Only good for simple images
Shape can then be used for
recognition
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Example:Canny Edge Detector (1986)
Popular but powerful edge detector

1 Gaussian smoothing
2 Gradient computation
3 Search of local maxima in the direction of the gradient, i.e. ridges

in the gradient magnitude image
4 Non-maximal suppression
5 Thresholding of ridge points (actually with hysteresis)
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Edge detectors: examples

Canny

Original Laplace

Sobel
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Further Example: Active contours

Aim: improve boundary detection
Integrate information over distance
Use cues from biological vision (Gestalt cues)

I Smoothness
I Closure

Main ideas:
I Insert an initial contour in the image domain
I Stretch and bend it according to the forces defined by the image

data
I Keep the contour smooth during the evolution with a sort of internal

energy
Active contours techniques use:

I Optimization strategies
I Calculus of variations and PDEs
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Example

Slow Normal Fast Play/Pause Stop
If your pdf viewer does not support this media, click here
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HEARTFAID project: Example of Activity

Slow Normal Fast Play/Pause Stop
If your pdf viewer does not support this media, click here
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5 Image Registration
Basics
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Image Registration: definition

Image registration is the process of determining the spatial
transform that maps points from one image to homologous points
on a object in the second image
e.g. align if the images depict the same object, align the points
corresponding to the same material point
or match structures of interest (corners, edges,. . . )
Generally, the criterion is prescribed by an application relying on
the registration task
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Registration purposes

Data fusion (e.g. functional data to
anatomical data)
Construction of anatomical atlases
Mapping to anatomical atlases
Comparison of patients
Content based image retrieval
Motion analysis in image sequences
. . .
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Registration bases

Let f ,g be images, T a geometric transformation
D(f ,g,T ) a criterion asserting the goodness of the matching
Then the registration problem boils down to:

T̄ = arg min
T

D(f ,g,T )

Thus to develop a registration framework, we may:
I Represent somehow the geometric transformation T
I Design a similarity measure D(f ,g,T )
I Devise an optimization algorithm
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Representing geometric transformation

Classical (matrix) groups
I rotations, scaling, isometries, affine transformations,...

Splines
General diffeomorphisms

I Discretized as Free Form Deformations (FFD)
I i.e. we assign to every pixel (voxel) x a displacement vector u(x)

s.t.:
T (x) = x + u(x)

I Requires some regularization of the solution (e.g. Tichonov
regularization )
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Similarity measures
Landmark based

I If we now that a set of points {p} in the first image fcorrespond to
the points {q} in the second image g

I Remark: such points should be characteristic points of an object (a
contour, corners or other easily detectable couple of points)

I Then we may choose:

D(f ,g,T ) =
∑

p∈{p}

‖Tp − q‖2 (1)
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Similarity measures

Intensity based
I Uses directly the intensity functions of the images
I Remark: No point extraction or segmentation is required
I Then we may choose some functional norm, the simplest ones

being:

SSD(f ,g) =

∫
Ω

(f (x)− g(T (x)))2 = ‖f − g ◦ T‖2
2

SAD(f ,g) =

∫
Ω

|f (x)− g(T (x))| = ‖f − g ◦ T‖1

I Also in use: mutual information, cross correlation,...
I Depending on

F statistical hypothesis (e.g. gaussian noise)
F a priori relation between the intensity functions (identical, linear

dependence, functional dependence,. . . )
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Optimization

Generally gradient descent
Non convex functional⇒ Big dependence on the initialization
Use the pyramid trick:
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Examples

T2 weighted and proton density brain MRI
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Examples

Moving image, initial and final alignment

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 93 / 109



6 Shape analysis
Basics
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Shape analysis

Shape measurements are physical dimensional measures that
characterize the appearance of an object
The goal is to use the fewest necessary measures to characterize
an object adequately so that it may be unambiguously classified
The shape may not be entirely reconstructable from the
descriptors, but the descriptors for different shapes should be
different enough that the shapes can be discriminated

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 95 / 109



Area

The area is the number of pixels in a shape
The convex area of an object is the area of the convex hull that
encloses the object
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Perimeter

The perimeter (length) is the number of pixels in the boundary of
the object
The convex perimeter of an object is the perimeter of the convex
hull that encloses the object

Perimeter External perimeter Convex perimeter
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Axis

The major axis is the longest line
that can be drawn through the object
The minor axis is the longest line
that can be drawn through the object
whilst remaining perpendicular with
the major-axis
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Aspect Ratio

The major axis is the longest line
that can be drawn through the object
The minor axis is the longest line
that can be drawn through the object
whilst remaining perpendicular with
the major-axis
The aspect ratio measures the ratio
of the objects height to its width:

AspectRatio =
Height
Width
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Compactness

Compactness (also called formfactor) is defined as the ratio of the
area of an object to the area of a circle with the same perimeter:

Compactness =
4π · Area

Perimeter2
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Convexity

Convexity is the relative amount that an object differs from a
convex object
A measure of convexity can be obtained by forming the ratio of the
perimeter of an objects convex hull to the perimeter of the object
itself:

Convexity =
Perimeterconvex

Perimeterexternal
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Convexity
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Solidity

Solidity measures the density of an object
A measure of solidity can be obtained as the ratio of the area of
an object to the area of a convex hull of the object:

Solidility =
Area

Areaconvex
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Solidility
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Fiber length

Fiber length gives an estimate as to the true length of a threadlike
object

FiberLength =
Perimeter + (Perimeter2 − 16 · Area)1/2

4
The estimate is fairly accurate on threadlike objects with a
formfactor that is less than 0.25 and gets worse as the formfactor
increases
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Average Fiber length

The number of skeleton end-points estimates the number N of
fibers (half the number of ends)

AverageFiberLength =
TotalFiberLength

N
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1 IEEE Transaction on Pattern Analysis and Machine Intelligence

2 IEEE Transaction on Image Processing International

3 Journal of Computer Vision Image and Vision Computing

4 Pattern Recognition

5 Journal of Mathematical Imaging and Vision

6 Pattern Recognition and Image

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 107 / 109



Sotware tools

Photoshop
GIMP
ImageJ
Mathematica and Digital
Image Processing Toolbox

MATLAB: Image Processing
Toolbox
ITK
VTK
AVS

SI-LAB (ISTI-CNR) Image Processing in Biomedical Applications 108 / 109



Credits

Some materials for this presentation have been draw from public resources available
on the World Wide Web.
In particular, most historical data were taken from Klaus Mueller presentation
(http://www.cs.sunysb.edu/˜mueller/).
Some images and data were taken from:

Gonzalez RC, Woods RE: Digital Image processing

Sam Gahmbir
(http://mips.stanford.edu/public/video_lectures/index.adp)

Guy Gilboa, Nir Sochen and Yehoshua Y. Zeevi (http:
//www.math.ucla.edu/˜gilboa/PDE-based_image_filtering.html)

Chunming Li, Chenyang Xu, Changfeng Gui and Martin D. Fox
(http://www.engr.uconn.edu/˜cmli/code/)

Johns Hopkins University (http://www.jhu.edu/)

Philips, Siemens, GE,...

If you find any omission in the list above, please contact us.
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